

Sampler-water exchange of polar compounds. A mechanistic approach. (An invitation)

Kees Booij

www.pasoc.eu

Summary

- The issue for samplers of polar compounds
 - calibration parameters show a large scatter
 - o any number goes
 - o validity is assessed by outlier tests and field validation
 - calibrating for all compounds is an insurmountable task
- Strengthening our mechanistic understanding may help
 - Design calibration experiments within a mechanistic framework
 - Play around with sampler design
 - Interpret R_s in terms of rate limiting steps

Scatter in calibration data. Example for Chemcatchers

- Chemcatchers with SDB-RPS sorbent
- with and without membrane: n > 10
- *R_s*/A (areas 0.126, 0.159, 0.35 dm²)
- basically from two labs
- years 2005 2019

Chemcatchers without membrane

Chemcatchers with PES membrane

Scatter maybe related to temperature and flow? Diuron (Chemcatcher with membrane)

Take R_s from regression equation?

Take the median?

Hard to decide based on statistical considerations

Scatter maybe related to temperature and flow? Terbutryn (Chemcatcher with PES membrane)

Hard to decide based on statistical considerations And for most compounds you have less values (1 or 2)

Passive vs. active sampling

Van Metre et al. 2017, EnvPoll 220A:431-440

Do field calibration?

diuron R_s/A Five Swiss rivers : 1.0 L/(dm² d) Seven lab calibrations : 0.2 to 0.9 L/(dm² d)

Moschet et al. 2015 Water Res. 71:306-317

Series resistance model

Limiting *R*_s/A for WBL control and membrane control

Full WBL control:

$$\frac{k_{\rm w}L}{D_{\rm w}} = 0.664 \text{ Re}^{1/2} \text{ Sc}^{1/3} \qquad \text{Re} = \frac{UL}{V} \qquad Sc = \frac{V}{D_{\rm w}}$$
$$\frac{R_{\rm s,w}L}{AD_{\rm w}} = 0.664 \text{ Re}^{1/2} \text{ Sc}^{1/3}$$

Full membrane control (transport through pore water only)

$$\frac{R_{\rm s,m}}{A} = \frac{\phi D_{\rm w}}{\tau_{\rm w,m}^2 d_{\rm m}}$$

$$\frac{R_{\rm s,m}L}{AD_{\rm w}} = \frac{\phi L}{\tau_{\rm w,m}^2 d_{\rm m}}$$

Alvarez et al., 2004. EnvironToxicolChem 23:1640-1648

Chemcatchers with membrane: some degree of sorbent control:

WBL and membrane allow faster kinetics

Chemcatchers without membrane: Appreciable degree of sorbent control

WBL allows faster kinetics

Intermezzo: Sorbent resistance models are nasty Processes not always well understood

Solutions exist if sorbent - pore water equilibrium can be assumed

- From polymers-water exchange, partial sorbent/WBL control
 - Crank, 1975. The Mathematics of Diffusion.
 - Tcaciuc et al., 2015. EnvironToxicolChem 34(12): 2739-2749
- Numerical

 Endo, Matsuura, Vermeirssen, 2019. EnvironSciTechnol 53: 1482-1489

$$D_{\rm s} = \frac{\phi D_{\rm w}}{\tau_{\rm w,s}^2 \left[\phi + (1 - \phi)\rho_{\rm s}K_{\rm sw}\right]}$$

• Sorbent resistance is time dependent. *R*_s concept breaks down.

transverse equilibrium

longitudinal disequilibrium

Back to WBL and membrane

 $k_{\rm w}A$ sets an upper limit to R_s (WBL controlled kinetics)

• $\frac{\phi D_w}{\tau_{w,m}^2 d_m} A$ sets an upper limit to R_s (membrane controlled kinetics)

- Both can be measured with mass transfer sensors (alabaster or otherwise)
 - with membrane

• with membrane :
$$\frac{1}{k_{o,1}A} = \frac{1}{k_wA} + \frac{\tau_{w,s}^2 d_m}{\phi D_w A}$$

• without membrane :
$$\frac{1}{k_{o,2}A} = \frac{1}{k_w A}$$

Experimental: calibrate under controlled k_w conditions

Measure k_w with

- alabaster dissolution rates
- benzoic acid dissolution rates
- PRC dissipation in LDPE or silicone
- limiting currents (electrochemical)

 $k_w A \approx R_s ? \Rightarrow$ full WBL control $k_w A >> R_s ? \Rightarrow$ no flow effects

Experimental: manipulate membrane thickness

Challis et al. 2016, AnalChem 88(21): 10583-10591

Experimental: manipulate sorbent thickness

sides exposed	one	two
compound	R _s (L/d)	R _s (L/d)
tebuthiuron	0.48	1.53
hexazinone	0.48	1.57
simazine	0.46	1.48
atrazine	0.68	1.78
diuron	0.59	1.58
amethryn	0.75	1.38

Shaw & Mueller 2009, EnvironSciTechnol 43:1443-1448

Invitation

- Put experimental R_s into perspective
 - Report $R_{\rm s}$ together with measured $k_{\rm w}$
 - Characterise the membrane with measured

$$\frac{\tau_{w,s}^2 d_m}{\phi}$$

Establish relationship between k_w , U, temperature for your sampler in the field

POCIS inside canister :
$$\frac{k_w L}{D_w} = 0.21 \text{ Re}^{1/2} \text{ Sc}^{1/3}$$
 ?
POCIS outside canister : $\frac{k_w L}{D_w} = 0.41 \text{ Re}^{1/2} \text{ Sc}^{1/3}$?

Summary

- Large between-study variability in R_s
 - Analytical variability (experimental variability?) may be an issue
- Framework for interpreting measured R_s is needed (rate control by WBL/membrane/sorbent)
 - Easily done for WBL and membrane controlled kinetics
 - More challenging for sorbent controlled kinetics
 - R_s measurement under varying k_w , membrane thickness, sorbent thickness may yield very valuable insights.
- I am happy to support

Thank you for listening. Happy to discuss further.