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Summary

 The issue for samplers of polar compounds

• calibration parameters show a large scatter

o any number goes

o validity is assessed by outlier tests and field validation

• calibrating for all compounds is an insurmountable task

 Strengthening our mechanistic understanding may help

• Design calibration experiments within a mechanistic framework

• Play around with sampler design

• Interpret Rs in terms of rate limiting steps



Scatter in calibration data. Example for Chemcatchers

 Chemcatchers with SDB-RPS sorbent

 with and without membrane: n > 10

 Rs/A (areas 0.126, 0.159, 0.35 dm2)

 basically from two labs

 years 2005 - 2019



Chemcatchers without membrane
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Chemcatchers with PES membrane
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Scatter maybe related to temperature and flow?

Diuron (Chemcatcher with membrane)

Take Rs from regression equation?

Take the median?

Hard to decide based on statistical considerations
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Scatter maybe related to temperature and flow?

Terbutryn (Chemcatcher with PES membrane)
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Hard to decide based on statistical considerations

And for most compounds you have less values (1 or 2)



Passive vs. active sampling

Van Metre et al. 2017, EnvPoll 220A:431-440

Median passive/active: 0.1 to 1.5

that is an order of magnitude



Do field calibration?

Moschet et al. 2015 Water Res. 71:306-317
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diuron Rs/A

Five Swiss rivers :  1.0            L/(dm2 d)

Seven lab calibrations : 0.2 to 0.9 L/(dm2 d)

Rs = 0.13 L/d  7% R2=0.88



Series resistance model
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Limiting Rs/A for WBL control and membrane control

Full WBL control: 

Full membrane control

(transport through pore water only)
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Alvarez et al., 2004. EnvironToxicolChem 23:1640-1648
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membrane control

WBL and membrane allow faster kinetics



Chemcatchers without membrane:

Appreciable degree of sorbent control 
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Intermezzo: Sorbent resistance models are nasty

Processes not always well understood

Solutions exist if sorbent - pore water equilibrium can be 

assumed

• From polymers-water exchange, partial sorbent/WBL control

o Crank, 1975. The Mathematics of Diffusion.

o Tcaciuc et al., 2015. EnvironToxicolChem 34(12): 2739-2749

• Numerical

o Endo, Matsuura, Vermeirssen, 2019. EnvironSciTechnol 53: 

1482-1489

• Sorbent resistance is time dependent. Rs concept breaks down.
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Back to WBL and membrane

 sets an upper limit to Rs (WBL controlled kinetics)

 sets an upper limit to Rs (membrane controlled kinetics)

 Both can be measured with mass transfer sensors (alabaster or otherwise)

•with membrane : 

•without membrane :
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Experimental: calibrate under controlled kw conditions
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 alabaster dissolution rates

 benzoic acid dissolution rates

 PRC dissipation in LDPE or silicone 

 limiting currents (electrochemical)

kwA  Rs ?  full WBL control

kwA >> Rs ?  no flow effects
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Experimental: manipulate membrane thickness
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1/Rs vs. number of membranes (n = 0, 1, 2,...)

0.075 cm = 750 m

Challis et al. 2016, AnalChem 88(21): 10583-10591

MoDGT = Cw Rs t

MoDGT ~ Rs



Experimental: manipulate sorbent thickness

sides 

exposed

one two

compound Rs

(L/d)

Rs

(L/d)

tebuthiuron 0.48 1.53

hexazinone 0.48 1.57

simazine 0.46 1.48

atrazine 0.68 1.78

diuron 0.59 1.58

amethryn 0.75 1.38

Shaw & Mueller 2009, EnvironSciTechnol 43:1443-1448

ss

one side exposed two sides exposed



Invitation

 Put experimental Rs into perspective

• Report Rs together with measured kw

• Characterise the membrane with measured 

 Establish relationship between kw, U, temperature for your sampler in the field
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Summary

 Large between-study variability in Rs

• Analytical variability (experimental variability?) may be an issue

 Framework for interpreting measured Rs is needed (rate control by 

WBL/membrane/sorbent)

• Easily done for WBL and membrane controlled kinetics

•More challenging for sorbent controlled kinetics

• Rs measurement under varying kw, membrane thickness, sorbent thickness may 

yield very valuable insights.  

 I am happy to support



Thank you for listening.

Happy to discuss further. 


