Evaluation of Passive Sampling Nonequilibrium Adjustment Methods of Sediment Porewater PCBs at Two Sites

Oindrila Ghosh[†], Nathalie Lombard[†], Mandar Bokare[†], James Sanders, Upal Ghosh[†]

† Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States

Biochemical and

Introduction

PASSIVE SAMPLING:

- Provides freely dissolved concentration
- Used for assessing pollutant bioavailability
- Calculating pollutant gradients
- Very low detection limits (ng/L to pg/L)
- Avoids need for collecting and extracting large volumes of water to meet instrument detection limits

Introduction

PRC Correction

- Kinetically inhibited to reach equilibrium within practical deployment times.
- Correction for non-equilibrium conditions Use of PRCs
- How they work!
 - Samplers impregnated with PRCs before deployment.
 - While deployed, sorbed PRCs are released
 - Kinetics of analyte uptake can be estimate from the kinetics of PRC loss

 Compare between the PRC adjustment methods applied to passive samplers deployed in sediment porewaters

• Evaluate the better suited PRC correction method for a given flow regime.

PRC Correction Methods

Site 1: Anacostia River tributaries

WUMBC

- □ Flashy urban streams
- Drainage area of **173 square miles**⁸
- Almost 70 % of the watershed is drained by the Northeast and Northwest Branch tributaries⁸
- □ Other major tributaries:
 - Lower Beaverdam Creek (LBC)
 - Watts Branch (WAB)
 - Hickey Run (HIR).

Observations: Correction with Surface Water

- Lesser corrections for surface water than sediment porewater
- Surface water concentrations reach equilibrium faster

INARC

Observations: Homolog Distribution of Feq for MVA Method

Recommended			
(Sanders et al., 2018)		This Study	
mono-tri	PRC 29	mono-tri	PRC 29
tetra-penta	PRC69	tetra-hexa	PRC69
hexa	PRC155		
hepta-deca	PRC 192	hepta-deca	PRC 192

MVA Method is prone to give errors when all the PRCs are not considered

Observations: Comparison of Fractional Equilibration Term

- The fractional equilibration term (Feq) accounts for how close to equilibrium the system is
- The range of Feq for the first order models are almost similar to the Diffusion Model
- MVA method has more deviation

INARC

Observations: Distribution of C_{pw} across various flow regimes

LBC1, LBC2 - highest porewater concentrations

Observations: Relative Correction with unadjusted concentrations

C_{free} of PCBs in upper 15 cm of unamended Lower Lower Beverdam Creek Study area sediment

- Correlation coefficients for the Ke-Vm method were in most cases slightly higher than the K_e-K_{pw} (or K_e -K_{ow}) method
- F_{eq} and C_{pw} for the K_e-K_{pw} (or K_e
 -K_{ow}) and the diffusion methods similar for almost all the sites.

Site 2: Berry's Creek, NJ

- Tidal marsh covered with phragmites
- USEPA Superfund site
- Primary COCs: PCBs and Hg
- Site for a demonstration of in-situ treatment with AC

Observations: PRC Corrections for porewater

- PCB porewater in unamended plot (0-10 cm)
- ke-K_{PW} correction
- Note logarithmic scale

Observations: Berry's Creek PRC correction comparison

- Top 2.5 cm sediment porewater PCBs
- Comparison of 5 correction methods

Key Conclusions

- Surface water needs lower correction as compared to sediment porewater
- The first order linear regression model estimates are close to those of the diffusion model
- The **MVA method was not consistent** across the sites

Thank You

Funding sources:

DOEE and SERDP

Chemical Biochemical and Environmental Engineering